博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
anchor_target_layer层解读
阅读量:7187 次
发布时间:2019-06-29

本文共 15568 字,大约阅读时间需要 51 分钟。

 总结下来,用generate_anchors产生多种坐标变换,这种坐标变换由scale和ratio来,相当于提前计算好。anchor_target_layer先计算的是从feature map映射到原图的中点坐标,然后根据多种坐标变换生成不同的框。

anchor_target_layer层是产生在rpn训练阶段产生anchors的层

源代码:

1 # --------------------------------------------------------  2 # Faster R-CNN  3 # Copyright (c) 2015 Microsoft  4 # Licensed under The MIT License [see LICENSE for details]  5 # Written by Ross Girshick and Sean Bell  6 # --------------------------------------------------------  7   8 import os  9 import caffe 10 import yaml 11 from fast_rcnn.config import cfg 12 import numpy as np 13 import numpy.random as npr 14 from generate_anchors import generate_anchors 15 from utils.cython_bbox import bbox_overlaps 16 from fast_rcnn.bbox_transform import bbox_transform 17  18 DEBUG = False 19  20 class AnchorTargetLayer(caffe.Layer): 21     """ 22     Assign anchors to ground-truth targets. Produces anchor classification 23     labels and bounding-box regression targets. 24     """ 25  26     def setup(self, bottom, top): 27         layer_params = yaml.load(self.param_str_) 28         anchor_scales = layer_params.get('scales', (8, 16, 32)) 29         self._anchors = generate_anchors(scales=np.array(anchor_scales))  #generate_anchors函数根据ratio和scale产生坐标变换,这些坐标变换是让中心点产生不同的anchor 30         self._num_anchors = self._anchors.shape[0]                 31         self._feat_stride = layer_params['feat_stride']             #feat_stride和roi_pooling中的spatial_scale是对应的,一个是16,一个是16分之                                                    一,一个是把中心点坐标从feature map映射到原图,一个是把原图roi框坐标映射到feature map 32  33         if DEBUG: 34             print 'anchors:' 35             print self._anchors 36             print 'anchor shapes:' 37             print np.hstack(( 38                 self._anchors[:, 2::4] - self._anchors[:, 0::4], 39                 self._anchors[:, 3::4] - self._anchors[:, 1::4], 40             )) 41             self._counts = cfg.EPS 42             self._sums = np.zeros((1, 4)) 43             self._squared_sums = np.zeros((1, 4)) 44             self._fg_sum = 0 45             self._bg_sum = 0 46             self._count = 0 47  48         # allow boxes to sit over the edge by a small amount 49         self._allowed_border = layer_params.get('allowed_border', 0) 50  51         height, width = bottom[0].data.shape[-2:]               52         if DEBUG: 53             print 'AnchorTargetLayer: height', height, 'width', width 54  55         A = self._num_anchors 56         # labels 57         top[0].reshape(1, 1, A * height, width) 58         # bbox_targets 59         top[1].reshape(1, A * 4, height, width)   #reshape输出的形状 60         # bbox_inside_weights 61         top[2].reshape(1, A * 4, height, width) 62         # bbox_outside_weights 63         top[3].reshape(1, A * 4, height, width) 64  65     def forward(self, bottom, top): 66         # Algorithm: 67         # 68         # for each (H, W) location i 69         #   generate 9 anchor boxes centered on cell i 70         #   apply predicted bbox deltas at cell i to each of the 9 anchors 71         # filter out-of-image anchors 72         # measure GT overlap 73  74         assert bottom[0].data.shape[0] == 1, \ 75             'Only single item batches are supported' 76  77         # map of shape (..., H, W) 78         height, width = bottom[0].data.shape[-2:]      #得到特征提取层最后一层feature map的高度和宽度,具体原因讲解看代码框下面的分析 79         # GT boxes (x1, y1, x2, y2, label) 80         gt_boxes = bottom[1].data 81         # im_info 82         im_info = bottom[2].data[0, :] 83  84         if DEBUG: 85             print '' 86             print 'im_size: ({}, {})'.format(im_info[0], im_info[1]) 87             print 'scale: {}'.format(im_info[2]) 88             print 'height, width: ({}, {})'.format(height, width) 89             print 'rpn: gt_boxes.shape', gt_boxes.shape 90             print 'rpn: gt_boxes', gt_boxes 91  92         # 1. Generate proposals from bbox deltas and shifted anchors 93         shift_x = np.arange(0, width) * self._feat_stride 94         shift_y = np.arange(0, height) * self._feat_stride 95         shift_x, shift_y = np.meshgrid(shift_x, shift_y) 96         shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), 97                             shift_x.ravel(), shift_y.ravel())).transpose() 98         # add A anchors (1, A, 4) to 99         # cell K shifts (K, 1, 4) to get100         # shift anchors (K, A, 4)101         # reshape to (K*A, 4) shifted anchors102         A = self._num_anchors103         K = shifts.shape[0]104         all_anchors = (self._anchors.reshape((1, A, 4)) +105                        shifts.reshape((1, K, 4)).transpose((1, 0, 2)))106         all_anchors = all_anchors.reshape((K * A, 4))107         total_anchors = int(K * A)108 109         # only keep anchors inside the image110         inds_inside = np.where(111             (all_anchors[:, 0] >= -self._allowed_border) &112             (all_anchors[:, 1] >= -self._allowed_border) &113             (all_anchors[:, 2] < im_info[1] + self._allowed_border) &  # width114             (all_anchors[:, 3] < im_info[0] + self._allowed_border)    # height115         )[0]116 117         if DEBUG:118             print 'total_anchors', total_anchors119             print 'inds_inside', len(inds_inside)120 121         # keep only inside anchors122         anchors = all_anchors[inds_inside, :]123         if DEBUG:124             print 'anchors.shape', anchors.shape125 126         # label: 1 is positive, 0 is negative, -1 is dont care127         labels = np.empty((len(inds_inside), ), dtype=np.float32)128         labels.fill(-1)129 130         # overlaps between the anchors and the gt boxes131         # overlaps (ex, gt)132         overlaps = bbox_overlaps(133             np.ascontiguousarray(anchors, dtype=np.float),134             np.ascontiguousarray(gt_boxes, dtype=np.float))135         argmax_overlaps = overlaps.argmax(axis=1)              #argmax_overlaps是每个anchor对应最大overlap的gt_boxes的下标136         max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]137         gt_argmax_overlaps = overlaps.argmax(axis=0)            #gt_argmax_overlaps是每个gt_boxes对应最大overlap的anchor的下标138         gt_max_overlaps = overlaps[gt_argmax_overlaps,139                                    np.arange(overlaps.shape[1])]140         gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]141 142         if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:143             # assign bg labels first so that positive labels can clobber them144             labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0145 146         # fg label: for each gt, anchor with highest overlap147         labels[gt_argmax_overlaps] = 1148 149         # fg label: above threshold IOU150         labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1151 152         if cfg.TRAIN.RPN_CLOBBER_POSITIVES:153             # assign bg labels last so that negative labels can clobber positives154             labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0155 156         # subsample positive labels if we have too many157         num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE)158         fg_inds = np.where(labels == 1)[0]159         if len(fg_inds) > num_fg:160             disable_inds = npr.choice(161                 fg_inds, size=(len(fg_inds) - num_fg), replace=False)162             labels[disable_inds] = -1163 164         # subsample negative labels if we have too many165         num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1)166         bg_inds = np.where(labels == 0)[0]167         if len(bg_inds) > num_bg:168             disable_inds = npr.choice(169                 bg_inds, size=(len(bg_inds) - num_bg), replace=False)170             labels[disable_inds] = -1171             #print "was %s inds, disabling %s, now %s inds" % (172                 #len(bg_inds), len(disable_inds), np.sum(labels == 0))173 174         bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32)175         bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])176 177         bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)178         bbox_inside_weights[labels == 1, :] = np.array(cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS)179 180         bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)181         if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0:182             # uniform weighting of examples (given non-uniform sampling)183             num_examples = np.sum(labels >= 0)184             positive_weights = np.ones((1, 4)) * 1.0 / num_examples185             negative_weights = np.ones((1, 4)) * 1.0 / num_examples186         else:187             assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &188                     (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))189             positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT /190                                 np.sum(labels == 1))191             negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) /192                                 np.sum(labels == 0))193         bbox_outside_weights[labels == 1, :] = positive_weights194         bbox_outside_weights[labels == 0, :] = negative_weights195 196         if DEBUG:197             self._sums += bbox_targets[labels == 1, :].sum(axis=0)198             self._squared_sums += (bbox_targets[labels == 1, :] ** 2).sum(axis=0)199             self._counts += np.sum(labels == 1)200             means = self._sums / self._counts201             stds = np.sqrt(self._squared_sums / self._counts - means ** 2)202             print 'means:'203             print means204             print 'stdevs:'205             print stds206 207         # map up to original set of anchors208         labels = _unmap(labels, total_anchors, inds_inside, fill=-1)209         bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)210         bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)211         bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0)212 213         if DEBUG:214             print 'rpn: max max_overlap', np.max(max_overlaps)215             print 'rpn: num_positive', np.sum(labels == 1)216             print 'rpn: num_negative', np.sum(labels == 0)217             self._fg_sum += np.sum(labels == 1)218             self._bg_sum += np.sum(labels == 0)219             self._count += 1220             print 'rpn: num_positive avg', self._fg_sum / self._count221             print 'rpn: num_negative avg', self._bg_sum / self._count222 223         # labels224         labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2)225         labels = labels.reshape((1, 1, A * height, width))226         top[0].reshape(*labels.shape)227         top[0].data[...] = labels228 229         # bbox_targets230         bbox_targets = bbox_targets \231             .reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2)232         top[1].reshape(*bbox_targets.shape)233         top[1].data[...] = bbox_targets234 235         # bbox_inside_weights236         bbox_inside_weights = bbox_inside_weights \237             .reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2)238         assert bbox_inside_weights.shape[2] == height239         assert bbox_inside_weights.shape[3] == width240         top[2].reshape(*bbox_inside_weights.shape)241         top[2].data[...] = bbox_inside_weights242 243         # bbox_outside_weights244         bbox_outside_weights = bbox_outside_weights \245             .reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2)246         assert bbox_outside_weights.shape[2] == height247         assert bbox_outside_weights.shape[3] == width248         top[3].reshape(*bbox_outside_weights.shape)249         top[3].data[...] = bbox_outside_weights250 251     def backward(self, top, propagate_down, bottom):252         """This layer does not propagate gradients."""253         pass254 255     def reshape(self, bottom, top):256         """Reshaping happens during the call to forward."""257         pass258 259 260 def _unmap(data, count, inds, fill=0):261     """ Unmap a subset of item (data) back to the original set of items (of262     size count) """263     if len(data.shape) == 1:264         ret = np.empty((count, ), dtype=np.float32)265         ret.fill(fill)266         ret[inds] = data267     else:268         ret = np.empty((count, ) + data.shape[1:], dtype=np.float32)269         ret.fill(fill)270         ret[inds, :] = data271     return ret272 273 274 def _compute_targets(ex_rois, gt_rois):275     """Compute bounding-box regression targets for an image."""276 277     assert ex_rois.shape[0] == gt_rois.shape[0]278     assert ex_rois.shape[1] == 4279     assert gt_rois.shape[1] == 5280 281     return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)
self._anchors:

我采用的是模型默认的3x3的anchor设置,np array的shape是(9,4)。第一个坐标是中心点的x坐标需要变化的值,生成的是框的最小x;第二个坐标是中心点的y坐标需要变化的值,生成的是框的最小y,这两个组成了框的左上坐标。第三个坐标是中心点的x坐标需要变化的值,生成的是框的最大x;第四个坐标是中心点的y坐标需要变化的值,生成的是框的最大y,这两个组成了框的右下坐标。

shift_x:

shift_x的长度是61,实际上这就是最后一层feature map的宽度大小。从0到60依次取整数,然后乘以16构成了shift_x。0到60是feature map上的每一个坐标点,也是anchor的中心点,乘以16之后就映射到了原图的坐标,这些就成了anchor在原图的中心点。

shift_y:

shift_y的长度是39,是最后一层feature map的长度大小,其他和shift_x类似。

 

 shift_x, shift_y = np.meshgrid(shift_x, shift_y),以下是这段代码生成的shift_x和shift_y:

  

shift_x和shift_y都变成了39x91的array,不同的是shift_x是按照行重复了39行,shift_y是按照列重复了61列

 

shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose(),以下是这段代码生成的shifts: shifts变成了2379x4的形状,shift_x.ravel()是把之前的61x39的shift_x reshape成2379x1的形状然后做第一列和第三列,shift_y.ravel()是把之前的61x39的shift_y reshape成2379x1的形状然后做 第二列和第四列

 之前一直没搞懂为什么要弄两个shift_x。原因是,你要进行anchor的坐标变换是基于中心点进行加减,这一步生成的就是2379个anchor的中心点坐标。中心点坐标是二维的,只有x和y,但是因为之后需要进行坐标变换,即从anchor坐标中心点生成anchor框,anchor框是左上右下4个点,所以变成了4维。第一列生成的是框的最小x,第三列生成的是框的最大x,这两个都需要在中心点  的x坐标下进行加减变化。同理,第二列和第四列是在中心点的y坐标上进行操作的。

 

 self._anchors.reshape((1, A, 4))进行的变化如下图,实际上增加了一维:

 

 all_anchors = (self._anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)))生成的all_anchors如下图:

 

self._anchors的shape是(1,9,4),shifts经过变换后变成(2379,1,4),得到的all_anchors的shape是(2379,9,4),相当于把2379个中点坐标分别和9个anchor变换坐标相加(我在numpy里面写了一个+的计算总结,类似的)

比如第一维的第一个就是(0,0,0,0)和9个anchor坐标变换分别相加:

all_anchors = all_anchors.reshape((K * A, 4))就会生成2379*9个roi框坐标
layer {  name: 'rpn-data'  type: 'Python'  bottom: 'rpn_cls_score'  bottom: 'gt_boxes'  bottom: 'im_info'  bottom: 'data'  top: 'rpn_labels'  top: 'rpn_bbox_targets'  top: 'rpn_bbox_inside_weights'  top: 'rpn_bbox_outside_weights'  python_param {    module: 'rpn.anchor_target_layer'    layer: 'AnchorTargetLayer'    param_str: "'feat_stride': 16"  }}

这是rpn-data层的prototxt,可以看到输入4个,输出4个

height, width = bottom[0].data.shape[-2:]

这一段代码得到的是特征提取层最后一层的高度和宽度。为什么呢?bottom[0]是rpn_cls_score,这是经过rpn3x3卷积和1x1卷积得到的某一类的框为前景、背景的预测概率值,可以发现这一个feature map的shape是(2*k,height,width)。这里的height,width实际上和特征层提取层最后一层的height,width一样大,因为这个3x3卷积stride和pad为1,1x1卷积本身不改变feature map的尺寸。论文中是在特征提取层最后一层进行rpn的滑动,在实际代码中,用rpn_cls_score的shape替代了特征提取层最后一层卷积。所以rpn_cls_score并不是要给rpn-data层输入概率值,而只是传rpn滑动所需的shape。

.data表示提取具体的data,.shape就是这个具体data的形状,[-2:]就是提取shape的倒数第二位到最后一位。

gt_boxes是输入的标准框,im_info包含了图片的尺寸(注意不是feature map尺寸,而是原图),data是这个图片本身的所有像素组成的array。

if DEBUG: 85             print '' 86             print 'im_size: ({}, {})'.format(im_info[0], im_info[1]) 87             print 'scale: {}'.format(im_info[2]) 88             print 'height, width: ({}, {})'.format(height, width) 89             print 'rpn: gt_boxes.shape', gt_boxes.shape 90             print 'rpn: gt_boxes', gt_boxes

从这个debug部分可以轻松看出这些信息。

 

转载地址:http://jmukm.baihongyu.com/

你可能感兴趣的文章
我的友情链接
查看>>
2-2 中断/异常机制工作原理
查看>>
Java到底是传引用还是传值?
查看>>
RAR压缩包审计工具unrar-nofree
查看>>
什么是CSS网页切图
查看>>
ConcurrentHashMap学习
查看>>
struts2标签实例
查看>>
Golang walk在win及linux建立 GUI 應用程式
查看>>
Linux执行命令常见的英语语句
查看>>
elasticsearch简单JavaAPI总结
查看>>
线索化二叉树
查看>>
vimrc
查看>>
【Spark亚太研究院系列丛书】Spark实战高手之路-第一章 构建Spark集群(第四步)(1)...
查看>>
Perl语言之统计特定字符串个数
查看>>
Linux用户和组管理
查看>>
Eclipse中从svn上检出项目无法识别jar包
查看>>
shell实现FTP自动批量上传下载文件
查看>>
我的友情链接
查看>>
Mybatis使用存储过程以及原理
查看>>
通讯录二维码使英文变为中文
查看>>